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Crystal Field Activation Energy for Ligand Substitution Reactions 

The premise. Ligand exchange rates cover many orders of magnitude. Our task is to explain why this is true using 
a simple theory. Unfortunately, there are no “intermediate” theories that explain the concepts of inert and labile, 
so to really get a good answer would require carrying out high-level QM calculations on your system of interest. 
Instead, let’s see if we can get a reasonable predictive theory using simple crystal/ligand field arguments. The 
basis of our work will be the concept of Crystal Field Activation Energy (CFAE); the difference in activation energy 
for the ligand exchange process that is caused by changes in Crystal Field. 

Data. Here is some data collected from several sources that give the electronic configuration and ligand 
exchange rate for several classes of transition metal complexes. When the ligand exchange rate is on the order of 
108 s-1 or faster, this approaches the fastest possible rate; a diffusion limited rate can be calculated to be 109–
1011 s-1. This rate is seen in alkali metals, alkaline earth metals, and some divalent transition metals. Labile metal 
complexes have rate constants ranging from 104–108 s-1. While indistinguishable in a practical sense, the rates 
can be measured. Complexes on the high-rate end include divalent transition metals, and lanthanides, while 
slower rate complexes are trivalent transition metals. Inert metal complexes have rates ranging from 10-1–10-8 
s-1. These complexes include the “classic” inert ions Cr3+ and Co3+. 

 

Notice some facts. Water exchange rates for divalent 3rd-row transition metals follow the following order, but it 
is hard to find a trend: V2+ < Ni2+ < Co2+ < Fe2+ < Mn2+ < Cu2+. V2+ is six times slower than V3+. The water exchange 
rate for Co3+ cannot be measured because this ion oxidizes water, but complexes of Co3+ (such as [Co(en)3]3+ or 
[Co(NH3)6]3+) are inert while their corresponding Co2+ counterparts are labile.4 
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Procedure. The first step in determining the CFAE is to determine the crystal field 
stabilization energy for the octahedral complex and the corresponding square 
pyramidal complex. For the purposes of this exercise, we are assuming that the 
mechanism is dissociative. Tabulated orbital energies as a function of geometry are 
readily available in most textbooks; for consistency in calculations, values are 
repeated here in units of Δo. When considering changes in geometry, do not change 
the spin state of the complex. 

1. Calculate the CFSE for both octahedral (Oh) and square pyramidal (Sq Pyr) for the following ions (bolded 
in the tables on the previous page) in units of Δo: 

a. Co(II) 
b. Co(III) (low spin) 
c. Cr(III) 
d. Mn(III) 

 

 

 

The ΔCFSE is the change in crystal field stabilization energy upon undergoing a geometry change. For the 
purposes of ligand substitution, the geometry change is accompanied by the loss of a ligand. 

2. Calculate the ΔCFSE (Δo Sq Pyr – Δo Oh) for the geometry change for the following ions in units of Δo, 
considering both water and cyano ligand exchange where possible: 

a. Co(II) 
b. Co(III) (low spin) 
c. Cr(III) 
d. Mn(III) (low spin) 

 

 

 

3. Rank order the four ions in terms of relative ∆CFSE from most positive to most negative. Does this order 
relate to the rate of ligand exchange in the above tables? 
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The ∆CFSE is just one factor in the rate of a reaction. For ligand dissociation reactions, a much larger term is the 

bond breaking that must occur to reach the intermediate geometry. Average metal ligand bond strengths can be 

measured or calculated using a Born-Haber cycle. A typical M-NH3 bond strength for a first-row divalent 

transition metal ion is 60-70 kcal/mol.5 The variability in these numbers is large but it is not unreasonable to 

assume that a M-OH2 bond strength is similar. Bonus points to a student who can find a good, referenced value 

for the bond strength of a transition element and water.  

The rate constant k of a chemical reaction is proportional to its activation energy by the Eyring equation:  

𝑘 = (
𝑘𝐵𝑇

ℎ
) 𝑒(−∆𝐺

‡/𝑅𝑇) 

Calculating a rate with this equation would require knowing the concentrations of the complexes and ligands, 

which we can assume to be equal across two experiments, so comparing the relative rate constants is the same 

as comparing the relative rates. The activation energy would be (at a minimum) approximately that of the M-L 

bond, or 60-70 kcal/mol plus the small amount of additional energy for the ∆CFSE upon moving from the 

octahedral geometry to the square pyramidal geometry.  

Calculating the relative rate between two metal complexes can be done by dividing terms, cancelling the 

constants: 

𝑘1
𝑘2

=
𝑒−∆𝐺1

‡/𝑅𝑇

𝑒−∆𝐺2
‡/𝑅𝑇

= 𝑒−∆∆𝐺
‡/𝑅𝑇 

The ∆∆G‡ term can be approximated as the ∆∆CFSE for the ligand substitution reaction. When you calculated 

the ∆CFSE, you used units of ∆o. To convert ∆o to a better unit for thermodynamics, recall that ∆o is on the order 

of 15,000-20,000 cm-1 which corresponds to about 45-55 kcal/mol (approximately that of the M-L bond 

strength). R = 1.987 cal/mol·K and T = 298 K. When doing this calculation, think about what it means if you use 

the positive or negative ∆CFSE value. 
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4. Using the ∆CFSE terms you calculated above, calculate the relative rates of ligand substitution for: 
 

a. Co(II) and Co(III) (low spin), water exchange 

 

 

 

b. Cr(III) and Mn(III) (low spin), cyanide exchange 

 

 

 

c. Do the relative rates you calculated here match the relative rates tabulated above? 

 

 

 

5. Additional practice: Verify the relative rates of V2+ and V3+. Is the rate order predicted correctly? Is the 
relative rate ratio predicted correctly? 
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